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Optimal control of material concentration using Fourier series
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SUMMARY

This paper presents an optimal control of the material concentration using Fourier series and �nite
element method. It is assumed that the optimal control value can be expanded into a Fourier series.
The Fourier coe�cient is identi�ed to minimize the performance function and the optimal control value
is determined. The Sakawa–Shindo algorithm is used for the minimization algorithm. The advection–
di�usion equation and shallow water equation are used for the analysis of material concentration and
water �ow. The Crank–Nicolson scheme and �nite element method using bubble function element with
stabilized control parameter are employed as temporal and special discretization. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

On December 8th in 1998, the Japanese Ministry of the Environment announced that the
achievement rate of environmental standards of lakes and marches of COD (chemical oxygen
demand) was 41.0% in Japan. Moreover, the rate in 1997 decreased 1% compared with that
in 1996. To solve such a serious social problem, the Japanese Ministry of Land, Infrastructure
and Transport has a plan of the water conduction [1] to clear up water quality. The aim of
the water conduction plan is that the river water is conducted into the enclosed water area to
promote water exchange and to clear up the water quality in the �nal stage. To do this, how
to estimate the volume of in�ow for the water conduction is important. To evaluate the water
conduction plan, the optimal control theory is suitable with the �nite element computation [2].
In this research, the shallow water equation and the advection–di�usion equation are used

for the material concentration and water �ows. For the discretization, the �nite element method
based on the bubble function element with stabilized control parameter [3] is used. To deter-
mine the value of the water conduction, the optimal control theory is employed. However, to
calculate the optimal control value, a large amount of the computational storage is required.
To reduce the computational storage, the main idea of the present paper is that the optimal
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control value is expanded into a Fourier series and a parameter identi�cation technique is used
to determine the Fourier coe�cients. After the veri�cation based on the simple numerical ex-
amples, the present method is applied to the water conduction plan of the lake Kasumigaura
in Japan. It is shown that the present method is useful and stable method for the computation
of the water conduction problem.

2. BASIC EQUATION

The shallow water equation is used to calculate the water �ow in the enclosed water area.
Using the summation convention and denoting the di�erentiation with respective to co-ordinate
xi (i=1; 2) by ( ); i, the equations of motion and continuity can be expressed as follows:

u̇i + ujui; j + g�; i − �(ui; j + uj; i); j + fui =0 (1)

�̇+ {(h+ �)ui}; i =0 (2)

where ui is the �ow rate, g is the gravitational acceleration, � is the water elevation, h is the
water depth as shown in Figure 1, � is the coe�cient of kinematic eddy viscosity, which is
represented as: �=(�c=6)u∗(h+�); f is the coe�cient of bottom friction, which is represented
as: f= u∗=(h+ �), u∗ is the friction velocity, which is given as u∗= gn2=(h+ �)1=3(ukuk)1=2,
where n is the Manning roughness coe�cient and �c is the Kalman coe�cient.
To calculate the �ow of material concentration, the advection–di�usion equation is used.

Equation of conservation can be expressed using the summation convention:

ċ+ uic; i − �c; ii=0 (3)

where c is the material concentration and � is the di�usion coe�cient.
The Crank–Nicolson scheme and the �nite element method using bubble function element

are employed for the temporal and spatial discretization.

h

η
x

z

ui flow rate

Figure 1. Co-ordinate.
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3. CONTROL THEORY

The optimal control theory is applied to solve the unsteady optimal control problem. However,
this method requires large computational storage for calculation. Because, to calculate optimal
control value, it is necessary to store the state value at all time stage and at all spatial nodal
points, the load for computer is very high and it is very di�cult to calculate an actual problem
or a large scale problem. To solve such a problem, it is assumed that the optimal control value
is expressed by the Fourier series. Parameter identi�cation technique is applied to determine
the Fourier coe�cient and the optimal control value.

3.1. Performance function

In the inverse problem, the performance function should be introduced. It is the quadratic
sum of the di�erence between the computed and required state values. The formulation of
parameter identi�cation theory resolves itself into a minimization problem of the performance
function. The performance function is represented as follows:

J ( �U) =
1
2

∫
T
(U −Uobj)TQ(U −Uobj) dt (4)

U= {ui; �; ci}T (5)

where U and Uopt mean the computed and required state values, respectively, in which �U
represents the control value at the control point, T is total time and Q is the weighting matrix.

3.2. Fourier series

In this research, optimal control value is expressed by the Fourier series as shown in Equa-
tion (6). However, it is very di�cult to determine many Fourier coe�cients which are ex-
pressed by Equations (7), (8). Therefore, all Fourier coe�cients are treated as unknown
parameters. Parameter identi�cation technique is applied to determine the Fourier coe�cients
of the optimal control value �ui(t).

�ui(t) =
a0
2
+

∞∑
n=1

(
an cos

(
2�nt
T

)
+ bn sin

(
2�nt
T

))
(6)

an =
1
�

∫ 2�

0
�ui(t) cos

(
2�nt
T

)
dt (7)

bn =
1
�

∫ 2�

0
�ui(t) sin

(
2�nt
T

)
dt (8)
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4. PARAMETER IDENTIFICATION

To determine the Fourier coe�cients, a parameter identi�cation technique is used as the con-
trol problem. It has an advantage of reducing the computational storage requirement because
calculation proceeds only as forward time marching way. Therefore, it is not necessary to store
all state values. The parameter identi�cation problem is regarded as a minimization problem of
the performance function J . To apply the Sakawa–Shindo method as a minimization algorithm,
the performance function is modi�ed as follows:

Kl= J l + 1
2(a

(l+1)
k − a(l)k )Tc(l) 12 (a(l+1)k − a(l)k ) (9)

where (l) is the iteration cycle of the Sakawa–Shindo method, c(l) is the weighting matrix,
and ak is the Fourier coe�cient which is treated as an unknown value as follows:

ak = {a0; a1; : : : ; an; b1; b2; : : : ; bn}T (10)

where c(l) is renewed every iteration of the Sakawa–Shindo method. The modi�ed performance
function is di�erentiated by ak and thus the following equation is derived:[

@Kl

@ak

]
=

∫
T

[
@U
@ak

]T
Q(U −Uobj) dt + c(l)(a(l+1)k − a(l)k ) (11)

From the stationary condition @Kl=@ak =0, the identi�ed Fourier coe�cients are renewed
by the following equation:

a(l+1)k = a(l)k − c−1(l)
[∫ tf

t0

{[
@U
@ak

]T
Q(U −Uobj)

}
dt

]
(12)

4.1. Sensitivity equation

The most di�cult problem faced in this research is how to calculate [@U=@ak], which is called
as a sensitivity matrix. To calculate the sensitivity matrix, all basic equations are di�erentiated
as follows:

@
@ak

{u̇i + ujui; j + g�; i − �(ui; j + uj; i); j + fui} = 0 (13)

@
@ak

{�̇+ {(h+ �)ui}; i} = 0 (14)

@
@ak

{ċ+ uic; i − �c; ii} = 0 (15)

All di�erentiated equations are discretized and calculated with the same scheme as the basic
equations.
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5. MINIMIZATION ALGORITHM

5.1. Sakawa–Shindo method

In this research, the Sakawa–Shindo method [4] is used for the minimization algorithm. To
apply the Sakawa–Shindo method, the modi�ed performance function is derived as in Equa-
tion (12) using stabilized constants c(l).
The calculation algorithm of the Sakawa–Shindo method is summarized as follows:

1. Set l=0, and assume the initial identi�ed vector a(0)k .
2. Solve the initial state vector u(0)i , �

(0), c(0) using Equations (1)–(3).
3. Solve the initial performance function J (0) using Equation (4).
4. Solve the sensitivity matrix [@Kl=@ak] using Equations (13)–(15).
5. Solve the identi�ed vector a(l+1)k using Equation (12).
6. Compute the error norm e= ‖a(l+1)j − a(l)j ‖, and if e6� then stop, else go to 7.
7. Solve the initial state vector u(l+1)i , �(l+1), c(l+1) using Equations (1)–(3).
8. Solve the initial performance function J (l+1) using Equation (4).
9. The weighting parameter c(l) is changed as follows:
If J (l+1)6J (l) then c(l+1) =0:9c(l), l+ 1→ l an go to 4, else c(l) = 2:0c(l), and go to 5.

6. NUMERICAL EXAMPLE

6.1. Rectangular model

To verify the present method, two numerical examples are carried out. Target parameters are
determined and the water conduction value and target material concentration at the objective
point are calculated using the determined parameters. The target concentration is evaluated at
the objective point. Plate 1 shows the domain used in the computation.

6.1.1. Case 1. In case 1, parameter identi�cation of one control variable is tested. The op-
timal control value is expressed as in Equation (16) and parameter a0 is determined as
a0 =−0:748656. The target concentration at the objective point is calculated using param-
eter a0. Then, the method of this research is tested using the target concentration.
In Figure 2, it is shown that the result of this calculation achieves the target concentration.

The identi�ed parameter is a0 =−0:733848, the error is 1.98%. From these results, this method
is shown as the useful tool for the computation.

�ui(t)= a0 (16)

6.1.2. Case 2. In case 2, parameter identi�cation of 10 variables is carried out. The optimal
control value is expressed by Equation (17) and each parameter ak should be determined.
Target concentration at the objective point is calculated using parameter ak . In the next step,
the present method is tested using the target concentration.
In Figure 3, the convergence of the performance function is shown. In Figures 4–7, the

results of this calculation are represented, those achieve the target concentration but the iden-
ti�ed parameter has some errors. The minimum error of the identi�ed parameter is 7.16%
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Figure 2. Variation of concentration at objective point.
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Figure 3. Variation of identi�ed parameter.
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Figure 4. Variation of concentration at objective point.
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Figure 5. Variation of water conduction value.
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Figure 6. Variation of identi�ed parameter a0.
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Figure 7. Variation of identi�ed parameter a3.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1377–1388



1384 H. FUJII AND M. KAWAHARA

Table I. Target and identi�ed parameter.

Parameter Target Identi�ed

a0 0.16894645 0.18105666
a1 0.14585334 0.15909170
a2 0.08423875 0.10113634
a3 0.00395492 0.02758947
a4 0.07098290 0.03736682
b1 0.08348577 0.07504478
b2 0.14880459 0.13181349
b3 0.17464931 0.14987622
b4 0.16019777 0.12978499
b5 0.11815313 0.08587758

Effluent

Sonobegawa Riv.Koisegawa Riv.

Sakuragawa Riv.

Kiyoakigawa Riv.

Onogawa Riv.

Shintonegawa Riv.
Hitachitonegawa Riv.

Figure 8. Finite element mesh and river boundary.

which is acceptable. However, the maximum error of the identi�ed parameter is 597.59%
which is outside of the acceptable range. The target and identi�ed parameters are shown in
Table I.

�ui(t)= a0 +
4∑
n=1

{
an cos

(
2�n
8T

t
)
+ bn sin

(
2�n
8T

t
)}

+ b5 sin
(
2�5
8T

t
)

(17)

6.2. Lake Kasumigaura water conduction project

From the numerical results of the rectangular model it is clear that the present method is
e�ective for the optimal control of material concentration. Therefore, the method is applied
to an actual civil engineering problem to test the e�ect on large scale problem (long term
calculation), which is the lake Kasumigaura water conduction problem. The Lake Kasumigaura
is one of the most polluted lakes in Japan. The water pollution damages both the drinking
water and �sheries. To solve the water pollution problem, many projects were started to clean
up the water quality in the Lake Kasumigaura. Figure 8 shows the �nite element mesh of
the Lake Kasumigaura and the river boundary. Plate 2 shows the water depth, and Figure 9

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1377–1388
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Control Point
(Takahama)

Objective Point
(Takasaki observation point)

Figure 9. Objective and water conduction point.

Table II. Condition of calculation.

Load value of COD 22.4 (t/day)

Objective concentration of COD 6.1 (mg/l)
Total node 500
Total element 711
Degree of freedom of variable 1211
Time increments �t 30 (s)
Total time 5 (day)
Time step 14 400 (step)
Di�usion coe�cient 0:5 (m2=s)
Maximum water conduction value 40 (m3=s)
Minimum water conduction value 0 (m3=s)

shows the objective point, i.e. Takasaki observation point of water pollution and the control
point i.e. water conduction point: Takahama.
The calculation condition is shown in Table II.
Considering the actual maximum quantity of conducted water is 35 (m3=s), the maximum

quantity of water is set to 40 (m3=s) in the present method. Based on a 1992 water presentation
plan for the Lake Kasumigaura, objective COD is assigned as 6.1 (mg/l). In this case, it
is assumed that the optimal control quantity is expressed by Fourier series composed of

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1377–1388
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16 terms.

Q(t)= a0 +
7∑
n=1

{
an cos

(
2�nt
T

)
+ bn sin

(
2�nt
T

)}
+ b8 sin

(
2�8t
T

)
(18)

The initial COD condition of the Lake Kasumigaura is calculated by eigenvalue analysis
[5]. Plate 3 shows the calculated initial condition and Figure 10 shows the variation of the
performance function. The performance function decreases until the fourth step of the Sakawa–
Shindo method. Then, at the �fth step, the performance function converges. As a result of
this convergence, the identi�ed water conduction value reaches to the maximum. Therefore,
the performance function does not decrease any more and the COD concentration does not
achieve the objective concentration 6.1 (mg/l). The variation of quantity from the control point
and COD concentration at the objective point are shown in Figures 11 and 12, respectively.
Plates 4 and 5 show the COD concentration over the whole domain, and Plates 6 and 7
around control point 5 days later. From these results, one cannot hope that water quality will
be cleared up all at once with only a water conduction project. However, Plate 7 shows the
COD concentration around the control point seems cleared up. This shows that the water
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Figure 12. COD concentration at objective point.

Table III. Computational storage requirement.

Procedure Memory storage

Optimal control theory (2.5 days) 2,008 (M byte)
This research (term number = 16) 1 (M byte)
This research (term number = 160) 11 (M byte)
This research (term number = 1600) 109 (M byte)

conduction, combined with other water puri�cation projects such as dredging and sewage
maintenance, is an important part to clear up the water.
The methods to reduce the computational storage requirement is examined, which is an

important objective of this research. Table III shows a comparison of computational storage
requirements based on normal optimal control theory and the method presented in this paper.
A part of optimal control theory shows the computational storage requirement to calculate 2.5
day control case. The computational storage requirement is dependent on the total time cycle
in case of optimal control theory. Therefore, in case that computational storage is required
to calculate a 5 day control, it is impossible even to use the compilers IBM XL Fortran
for AIX and g77 ver.2.95.2-13. It is, however, possible to meet the required computational
storage in order to calculate for the duration of 2.5 days. From compiling the result, 2G bytes
of storage is needed to calculate the 2.5 day control problem. It is very di�cult to calculate
such problem without parallel computing, but in the theory of this research, the computational
storage requirement is not dependent on the total time cycle. It is also dependent on the term
number of Fourier series. Therefore, it is possible to calculate a problem which spans a long
period of time. We have con�rmed that it is possible to calculate a long term step control
problem using Fourier series and parameter identi�cation technique.

7. CONCLUSION

In this paper, a new optimal control theory is presented. For the consideration of this new
control theory, it was assumed that an arbitrary function can be expressed by Fourier series.
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Ordinarily, the inverse problem requires a plenty of computational storage. However, in the
present method, Fourier series and parameter identi�cation technique are employed to calculate
the large scale inverse problem. The present method requires signi�cant computational time
dependent on the term number of Fourier series. Therefore, a very important future work will
be reducing the computational time.
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Plate 1. Image of numerical example.

Plate 2. Water depth.

Plate 3. Initial condition of COD (mg/l).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44(12)



Plate 4. COD concentration (non-control case—Kasumigaura 5 days later).

Plate 5. COD concentration (controlled case—Kasumigaura 5 days later).
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Plate 6. COD concentration (non-control case—around Takahama 5 days later).

Plate 7. COD concentration (controlled case—around Takahama 5 days later).
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